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Abstract

We establish the Backlund transformation for the construction of time-like surfaces with posi-
tive Gaussian curvature and imaginary principal curvatures. The construction can be realized by
algebraic algorithm via Darboux transformations. © 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

In 19th century, the construction of surfaces of negative constant curvature in Euclidean
spaceR® was one of the most important problems in differential geometry [7,26]. The
related topics, such as sinh-Gordon equation, Backlund transformations [1] and Darboux
transformations [5]have been developed extensively in the second half of 20th century and
constitute an essential partin the modern soliton theory [10,19,23,26]. In theory of relativity,
geometry of indefinite metric is very crucial. Hence, the theory of surfaces in Minkowski
spaceR?! which has the metricd = dx2+dy2—dz? attracted much attention. A series of
papers are devoted to the construction of surfaces of constant mean curvature [6,14,17,18] or
constant Gaussian curvature [4,12-15,20,22,25]. The situation is much more complicated
than the Euclidean case, since the surfaces may have a definite metric (space-like surfaces),
Lorentz metric (time-like surfaces) or mixed metric.
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Recently, the time-like surface of constant mean curvaturi@?ih have been studied
systematically [6,14,17,18]. In the meantime, the four kinds of surfaces (space-like and
time-like surfaces of positive and negative constant curvature) have been considered in
[11]by a unified approach-Barboux transformatiorit should be mentioned that a time-like
surface of positive constant Gaussian curvature is a parallel surface of a time-like surface
of constant mean curvature. In [18], it is pointed that there is a class of surfaces of constant
mean curvature whose principal curvatures are imaginary (see also [21]).

This class of surfaces has not been studied in [18] and has been missed in [11]. In[16,20],
the time-like pseudo-spherical congruences whose two focal surfaces are time-like and of
positive constant Gaussian curvature have been considered. However, the case of imaginary
principal curvatures has not been studied either. The purpose of the present paper is to study
the class of time-like surfaces with positive constant Gaussian curvature and imaginary
principal curvatures. It is seen that these surfaces have real asymptotic lines, and hence,
we can used some special asymptotic coordinates. The surfaces can be determined by a
solution of cosh-Gordon equation

wuw = coshw.

By using the time-like and space-like pseudo-spherical congruences the Backlund trans-
formation approach for the cosh-Gordon equation is established. Moreover, it is proved
that the system of partial differential equations can be solved explicitly by using the Dar-
boux transformation. The construction can be continued successively via some algebraic
algorithm.

We add a list of surfaces of constant Gaussian curvature and pseudo-spherical congruences
in the Appendix A.

Moreover, we would like to mention another motivation (from theoretical physics) to
the study of time-like surfaces of constant positive curvature with imaginary principal
curvatures.

The relativistic string is the one-dimensional relativistic object whose time evolution
extrimizes the Nambu-Goto action

S(r) = —K/dA,

where dA is the area element of the world sheet anid a constant.

From the mathematical point of view, world sheet of the relativistic stringtisie-like
minimalsurface in the spacetime (cf. [2,8]).

In [3], Barbashov et al. suggested a generalization of relativistic string model in three-
dimensional spacetimes with the action

Sy () = 8() —ZKHde

calledrelativistic string with an external fieldHere, d/ is the volume element of the region
bounded by the world sheet aflis a nonzero constant.

One can easily to see that critical points of this action integral are time-like surfaces with
nonzeroconstant mean curvatué in the spacetime.
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Moreover, they mentioned a relation between this generalized string model and soliton
theory. More precisely they claimed that the field equation of this generalized model in
three-dimensional Minkowski spa&® ! coincides with the following sinh-Gordon equa-
tion:

ww = Sinhw.

In their argument, they took isothermal-curvature line coordinates for the world sheet.
Namely, they assumed implicitly that the world sheet has two real distinct principal curva-
tures everywhere.

However, as we explained above, time-like surfaces of constant mean curvature may have
imaginary real principal curvatures.

This observation also motivates us to study the soliton theory and differential geometry
of cosh-Gordon equation and the corresponding time-like surfaces.

1. Asymptotic Chebyshev coor dinates and cosh-Gordon equation

Let R>1 be Minkowski three-space with Lorentzian metrid= dx2 +dy2 — dz2, and
S be a connected orientable two-manifold andS — R%! an immersion. The immersion
r is said to betime-likeif the induced metric 1= dr - dr of S is Lorentzian. We use the
abbreviation * for the scalar product of vectors in Lorentzian metriéd

The unit normal vector field of S can be regarded as a smooth mapS — St into
the unit pseudosphere

Sti={(x,y,2) e RRxZ +y2 — 2 = 1)

and calledGauss mapf S.
Let S be a time-like surface iR%! with unit normal vector fieldh. We can introduce a
system of frame$r; e1, €2, n} such thae; ande, are tangential null vector fields. Thus,

e =0, n?=1, n-e=0 (a=12). (1.1)
The fundamental equations of the surface are

dr = we,, de, = w’e, + 1n, dn = wie,, (@=12). (1.2)
From Eqg. (1.1) it follows

wh = w3 =0, (1.3)
and

©] +3€°05=0, w3+ 36°w5=0. (1.4)

Here, we assum® - e; to be positive and equal t&¢¢2. We suppose that there exist special
coordinategu, v) such that

ot =du — e dv, w?=—e“du—dv (1.5)
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and
0)% = —du — e “dv, a)% = —€ “du + dv. (16)

Afterward we will see that this is equivalent to say that the surface i ef 1 and the
principal curvatures are imaginary. From Eqg. (1.4), we have

a)f:%(du—e“’dv), wg’:%(e‘”du+dv)
From cfr = 0, we obtain
wt = w, du, w3 = w, dv. (1.7)

The first and second fundamental forms are, respectively

| = dr? = —du? — 2 sinhw du dv + dv?, (1.8)

Il = —dn-dr = —2 coshw du dv (1.9
It is easily seen thak = 1 and the principal curvatures 6fare imaginary. Th&auss
equationdof + w? A @§ = —% A @3 is

wyy = Ccoshw. (1.10)
It is seen thaCodazzi equations

dw%—i—w%/\wé =0, dw%—i—a)%/\a)% =0 (1.11)
or

dwd 4+ w3 A 0} =0, dw3 + w3 A wf =0 (1.12)

hold true. Thus, from the fundamental theorem of surfaces, we have

Theorem 1.1. From a solutiorw of the cosh-Gordo&q. (1.10)there is a time-like surface
S with K = 1 and imaginary principal curvatures.

According to the expressions (1.8) and (1.9) of the fundamental forms | and Il, we call the
coordinategu, v) asymptotic Chebyshev coordinates

Remark 1.2. Similar as that in Euclidean case, the surfasesf K = 1 in R*1is a
parallel surface of a surface of constant mean curvatuee 1/2 with distance 1. From the
conformal flat coordinates of time-like surface of constant mean curvature [17], we see the
existence of asymptotic Chebyshev coordinates. of

Remark 1.3. The cosh-Gordon equation has been appeared in the study of the Cauchy
problem of the harmonic maps froRt1 into St1 [9].
2. Bécklund transformations

Let S be a known time-like surface witk = 1 and two imaginary principal curvatures
(u, v) be the asymptotic Chebyshev coordinates. We use the pseudo-spherical congruences
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to construct surfaces of the same characters. The congruences can be time-like and space-like
either. Let

' =1+ l(aer + bey). (2.1)

Herel isareal constantarabe” = —1. The linesr’ generate ime-like line congruence_
. . —
and for the time-like vectorr’

()2 = 12, (2.2)

Let S’ be the surface generated by The surfaces is a focal surface oE_. We demand
that$’ is another focal surface of the congruernte and the unit normal vector field of
should be

n' = cosr(ae, — bey) + sintn (2.3)

which is evidently perpendicular to the ling. Here, sinc = n-n’is a constant. Thug;_
is a time-like pseudo-spherical congruenc®'. In order thats’ is another focal surface
of ¥_, we should have’ - dr’ = 0. From

dr’ = dr 4 I(dae; + ade; + dbe, + bdey) (2.4)

and the fundamental equations, we have

dr’ =[(du — e~ dv) + [(a, du + a, dv) + law, du]e;
+[(—e"“ du — dv) + (b, du + b, dv) + Ibw, dv]e,

—ié[a(du — € dv) + b(€” du + dv)]n, (2.5)

or
l
r, = 1+la, +law,)er + (-7 +lb,)ez + S@+ben,
l
r=(—e“+layer + (—1+1Ib, + lbw,)e + é(—a € +b)n. (2.6)
By usingabe®” = —1 and
ab, + a,b + abw, = 0, ab, + ayb + abw, =0 2.7)
we can write
4 b“ —w l -1
r=(1- Iay e+ (—e?+Iby)e + E(a —a~H)n,
l
(= (e +lajer + (~1- b= ) e+ S +b7hn. (2.8)
a 2
Takel = cost and defingu = secr — tgr, the equations’ - dr’ = 0 can be written as

1
267, = —p(a —a™ b, 2a"ta, = —;(b +b71 (2.9)
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Without loss of generalities, we may assume thig positive and put

o —w -0 —w

a = exp——, b= —exp———. (2.10)

Then, we obtain the following system of equations:

@ + o), = 2u5inh™ > Y W —w)y = E cosh? . (2.11)
By differentiation, it is seen that

(@ + @) = 2 coshw/ ; @ coshw/ ;r @

(@ — )y = Zsinhw/;wsinhw/;—w 2.12)

The integrability condition of (2.11) fow' is just the cosh-Gordon equation (1.10) and
the solutionw’ satisfies (1.10) too. Thus, Eq. (2.11) describesBfeklund transformation
o +— o' for the cosh-Gordon equation. We may use the Backlund’s theorem to confirm that
S’ is a time-like surface wittk = 1. However, for the purpose of applying the Backlund
transformation successively and showing thiahas two imaginary principal curvatures,
we have to prove thdt:, v) are also the asymptotic Chebyshev coordinate8.@y direct
but long calculation we obtain

rP=—1, r?=1 r, .r, =—sinho. (2.13)

v
Hence, the first fundamental form 8fis
I” = —du? — 2 sinhe’ du dv + dv?. (2.14)

Moreover, by differenting (2.3), we obtain

, by . o cost 1
n, = —azcosr— sint ) e + (—b, cost — e “sint)ex + > (a+a )n,
. . cos
n, = (ay cost — e “sint)e; + (ba—v + smr) e — 5 ‘ (b —b"Hn. (2.15)
a

By calculation, we have

—n, -r, =0, —Ny -y =0, —(N, - Iy +ny - 1,) = —2coshw’. (2.16)
Thus, the second fundamental f§fris

II"' = —2 coshw’ du dv. (2.17)

From Egs. (2.15) and (2.17) it is seen tlfats a surface oK = 1 and has two imaginary
principal curvatures. Moreovety, v) are the asymptotic Chebyshev coordinatess'of
Consequently, the Backlund transformation can be done successively, if the system (2.12)
can be solved successively.

The above results can be summarized as the following theorem:
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Theorem 2.1 (Time-like Backlund transformation).etS be a time-like surface withh = 1
and two imaginary principal curvature and, v) be the asymptotic Chebyshev coordinates
then

1. the system dEq. (2.11)is completely integrable

2. if o is a solution of(2.11),thenEq. (2.1)in which a, b have the expressiof2.10)
defines a time-like surfac® with K = 1 and two imaginary principal curvatures

3. the coordinatesu, v) are asymptotic Chebyshev coordinatesfoo.

Now, we use a space-like congruence to constfidtom S. We chooseabe® = 1 in
Eqg. (2.1), then apace-like congruencg. is obtained. In this case, we should have

n' = sinht (ae; — bey) + coshr n (2.18)

which is still a unit space-like vector field. The Eg. (2.6) holds as well and (2.8) is replaced
by

b l
r = <1 — Iaf) e+ (—e“+1Ib)e + E(a +a Hn,
l
(= (e +laje +(-1- b= )e - Skt —bn. (2.19)
a 2
Let! = sinht, the conditiom’ - dr’ = 0 becomes
2a,

2u _ @+ a . = —%(b —bY), (2.20)

b a

Here,u = cschr — cthr. Let

/

— /_ —
a= exp%, b= exp%. (2.21)

Then, we obtain

o +ow 2 o —w

(' — w), = 2 cosh , (o' + w), = — sinh
2 W

(2.22)

This is the equations for Béacklund transformation of the cosh-Gordon equations too. It is
seenthat (2.22) becomes (2.11), if we interchainge) and us€1/u) instead ofx. Further
calculations imply the anologue of Theorem 2.1.

Theorem 2.2 (Space-like Backlund transformation)et S be a time-like surface with
K = 1and two imaginary principal curvatures an@, v) be the asymptotic Chebyshev
coordinatesthen

1. the systen2.22)is completely integrable

2. if ' is a solution 0{2.22),then(2.1),in which, a, b have the expressiorf2.21),defines
a time-like surfaces’ with K = 1 and two imaginary principal curvatures

3. the coordinatesu, v) are the asymptotic Chebyshev coordinate$’dbo.
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3. Darboux transfor mations

We use Darboux transformations to realize the Backlund transformations explicitly. At
first, we have

Lemma 3.1. The cosh-Gordon equation is the zero curvature condition of the Lax pair

1
5[0 —e 1| —ov =
U=¢,0 =2 ., V=g, =2 Al (31
2l e 0 2|1
P

Here A (£ 0) is the spectral parameter andl is a matrix valued functiondepending on
the real variabl€u, v) and the complex variable(x # 0).

Proof. By direct calculation, we see that the zero curvature condition
Uy—V,+[U,V]=0 (3.2)

is equivalent to the cosh-Gordon equation. O

Lemma3.2. If (h1, h2)" is a column solution to the Lax pair far= Ag (h1 # 0, ho # 0),
then(—h1, hp)' is a column solution to the Lax pair far= —Ao.

Proof. Substitute(—h1, h2)! in the Lax pair (3.1) fon. = —Ag, it is easily seen that the
Lax pair is satisfied. O

Lemma3.3. Letw be areal solution of cosh-Gordon equatjon pure-imaginary number
and (h1, h2)! a column solution of the Lax pair for = Aq. If 42/ h1 is pure-imaginary at
one point(ug, vo), then it is pure-imaginary on any connected region containiing vop),
where the solutioriiy, h2)" makes sense arid # 0, ho # 0.

Proof. From the Lax equation (3.1), we see that

().l

ho 1 ho 1 [(hy\?
=) == e 3.4
<h1>,, 20 (hl) 20 <h1> (3.4)
Let A = ho/h1 + ha/h1. Then
A hy h 1 (hy K
Ay =DBe o (22 V4 A —wA+—(2_22)4. (3.5)
2 h1 20 \h1  hq

Consequently, it = 0 at(ug, vo), thenA = 0 on any connected region containifag, vo).
Hence i,/ h1 is pure-imaginary. O
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Theorem 3.4 (Darboux transformation)If  is a real solution of cosh-Gordon equation
then the function’, defined by

. ha 2 —w
e = — (h_1> e (3.6)

is a real solution of the cosh-Gordon equation too. Héta, k)’ is a column solution of
the LaxEg. (3.1)corresponding to a pure-imaginary spectral parametgrandiz/ h1 is
pure-imaginary.

Proof. First,we notice thatthe preceding Lemmaimpliesthatitis possible to have pure-imaginary

h/hi.
From the general theory of Darboux transformation in matrix form [10,11]

=D D, D) =14+21A (3.7)

is a solution of the Lax equation (3.1)for somé Here,

1 h
o O L1
_ _ 0 -1_ _ - 2
A=—-H 1 H " Q (3.8)
Xo hy
o [ -
W|thH_[h Iy }.Hence,
h
A0 =
ol=|1-2 h2 || o. (3.9)
A 2
ol < 0
h1
We should have
0 o =
A —e” 1| ~®v 7
ol=Z o,  ol== N (3.10)
u 2 / v 2 1
e 0 /
Py @

Substituting (3.9) into (3.10), we obtain (3.6). Besides, the zero-curvature condition of
(3.10) implies thaty' is a solution of cosh-Gordon equation. O

The transformatiotiw, ®) — (', ®1) is called theDarboux transformatiofDT) andD
the Darboux matrix The new solutioriw’, ®1) is called theDarboux transformof (v, @).

It is noted that the conclusion of Theorem 3.4 can be deduced by somewhat tedious
and lengthy but straightforward calculations. However, the explicit formula (3.7) of the
matrix-function®! is necessary for applying DT successively.

Theorem 3.5. The solutione’, obtained by the Darboux transformatioand the seed
solutionw to the cosh-Gordon equation are related by the Backlund transformgian).
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Proof. From Eg. (3.6), we see that
: ho\?
ete = (—2> . (3.11)
hi
Differentiating (3.11) and using (3.3), we obtain

/_
(0 +w)u =21 Sinhw @

(3.12)

Here u is a nonzero real number defined py= —o+/—13¢ € R* = R\ {0}, where
o = %1 such that

/ h
exp vt —o/—1-2 > 0.
2 hy

Similarly, we have
2

(0 — w)y = — cosh(e + ). (3.13)
w

Consequently, Eq. (2.11) holds. This completes the proof. O

Theorem 3.5 implies the following result:

Coroallary 3.6. The(time-like Backlund transformation — «’ of cosh-Gordon equation
can be solved explicitly biq. (3.6),provided a general solutio@ of the Lax equation
(3.1)is known

Remark 3.7. The time-like surface oK = 1 with principal curvature1 = «» and free of
umblics can be construct through Backlund transformation and Darboux transformation as
well.

We sketch the procedure. Take

ot =du — e dv, w? = —dv. (3.14)

a)% = —du — e “dv, w% = dv. (3.15)
instead of Egs. (1.4) and (1.6). We still tatde= €5 = 0 ande; - &, = €”/2. Then

| = —€’dudv+dv?, Il =—€”dudv. (3.16)
The Gauss equation becomes the Liouville equation

ow = 3€°. (3.17)
The time-like Backlund transformation takes the form

r'=r+1(ae1 + bey), abe® = —1, n' = cosr(ae; — bey) + sintn.
(3.18)
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Egs. (2.11) become

o+ o

_ 2
(@ + )y =—n exp%, (0 —w)y = m cosh (3.19)

The integrability condition for’ is the Liouville equation (3.17). By using the Lax pair
1

A0 O 1| @
b, == o ®, = = [02] 3.20
u 2 [ew 0} ’ v 2 1 ’ ( )

— wy

A

we can apply Darboux transformation to construct explicit solutions. The space-like Back-
lund transformation takes the form

r'=r+I1(ae1 + bey), abe” =1, n = sinht(ae; — bey) + coshrn,
(3.21)

which can be treated in the same way.

4, Geometrical meaning of Lax pair

In this section, we give the geometrical meaning of the Lax pair (3.1) together ®itta
formulafor time-like K = 1 surfaces with imaginary principal curvatures. To this end, we
identify Minkowski three-spacB?! with the Lie algebra = sh,R (cf. [17]).

We take the following basife,, e,, e5} of g: a

212[81 (1)} 222[(1) é} £3=[(1) 61] (4.1)

Hereafter, we identifiR?* with g via this basis
(x,y,2) < xey + ye, + zea. (4.2)
By the linear isomorphism (4.2) the Lorentzian metrié dorresponds to the scalar product
(X,Y)=3tr(XY), X,Yeg. (4.3)

The special linear grour = SLpR acts isometrically org via the Ad'-action Ad" :
& X G — g

Ad*(0)X =Ad(c ™ HX =07 1Xo (0 €G). (4.4)
The Ad*-action induces a double coveridg — SO (2, 1). Here,SO" (2, 1) denotes the
identity component of the Lorentz group(2, 1).

The Ad*-action of G onS!1 s transitive and isometric. The pseudospt@hé is repre-
sented as

St = Ad*(G)e; = (Ad(o Yeylo € G). (4.5)

Compare with [17], we have
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Proposition 4.1. Let® : D x R* — SLyR be a solution to the Lax pa{B.1)over a simply
connected regio of S andA € R*. Then

)
My = 2¢_15¢, A =+xe! (46)

describes a real loop of time-liké = 1 surfaces irR>* with imaginary principal curva-
tures. The unit normal vector field of eachis given by

n, = Ad(® ;. 4.7)
The first and second fundamental forms of egchre given by

I, = =22 du® — 2 sinhw du dv + 22 dv?, Il = —2 coshw du dv. (4.8)
Proof. Under the identification (4.2), differentiating (4.6), we have

0 d
Sh= —AAd(® Y { sinhw e, 4+ coshw ey}, Soh = AAd(@ e, (4.9)
u v

a%nx = 2Ad(@ " H{ coshw e, + sinhw e}, aa—vm =7 IAd(@ e, (4.10)
From these formulas, we get the required result. O
Note that Eq. (4.6) is a formula of Sym'’s type [24]. If we take

e =Ad(@h {—%@2 +g3>} . e=Ad@h {%(22 - g3>} (4.11)

andx = 1, we obtain (1.2) with Egs. (1.5) and (1.6), .e= r1 is just the surface considered
in Section 2 andu, v) are asymptotic Chebyshev coordinates.
Letus = Au, v1 = v/, the fundamental forms af, can be written as

I, = —du? — 2 sinhw (% xvl) duz dvy + dv?. (4.12)
I, = —2coshw (%, )»U]_) duq dug. (4.13)

Thus,w (u1, v1) = @ (A" Lu1, Av1) is a solution to
o’ = coshw’, (4.14)

uivy

and hencer;, is a surface correspondingdd in the sense of Theorem 1.1. In other words,
r,. is the Lie transformation afy [7]. Thus, we have

Theorem 4.2. The loop of time-like surfaces with K = 1 and two imaginary principal
curvatures are the Lie transformationsmaf

Similar results for other kinds of surfaces of constant curvature have been obtained in [11].

Remark 4.3. The quadruple(r;, Ad(@ 1)e,, Ad(@1)eg, 0y} constitutes a system of
moving orthonormal frames an. This is the geometrical meaning of the Lax pair (3.1). The
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Darboux transforn®® induces a new loofr}} of time-like surfaces of constant curvature
K = 1 with two imaginary principal curvatures. We call eaéhhe Darboux transform of
eachr;,.

Theorem 4.4. Letr : S — R?1 be a time-like surface of constant curvatute= 1 with
two imaginary principal curvatures. Leb be a solution to the Lax equatig.1) with
detd = 1. Take a pure-imaginary numbeg # 0 and Darboux matrixD(A) determined
by xo. Put®?! := @1/4/detD. Then the Darboux transform} of r; is

- 0 ~
rr= 2(@1)—1§q>1, r=+e', teR (4.15)

The pseudo-spherical line congruence correpondir® te given by the following formula

N N D \ta/ D
=0k 2Ad@T <vdeﬂ3> a<\/detD)

=1, +2Ad(®@ ™Y {

9
1+ 1-p!.
,\2—)\3—+ ot }

Here 1 denotes the identity matrix.

(4.16)

Proof. First, we notice thatd&(1) = 1 — (xz/kg) > 0, since\g is pure-imaginary. The
normalized matrix®? is a solution to (3.1) with det! = 1. Thus, by Proposition 4.1,
the Darboux transform! is given by Eq. (4.12). Sinc®/+/detD € SLR, (D/+/detD) 1
(9/0t)(D/~/detD) € g. Thus, Eq. (4.13) gives the pseudo-spherical line congruence cor-
responding td@. O

Thus, if we know a time-like surface of constant curvatiire= 1 with imaginary principal
curvatures and the solutioh of Lax pair, then an infinite series of surfaces of the same
characters together with the solutions of Lax pair can be obtained successively by Egs. (2.1),
(3.6) and (4.15). The algorithm consistsatdémentary operation@lgebraic operation and
substitution) only, if we note that, in the algorithm, we need oftlyather tharw'. However,
the seed solution with explicit expressions is to be found.

The above discussions is mainly of local character. It is interesting to develope those
results to a global theory.
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Appendix

A complete list of surfaces of constant Gaussian curvature and pseudo-spherical congruences in R3 and R*>!

Space Surface Congruence and BT DT Equation

R? r
r’ ¥ =r+1(cos(a’/2)e; + sin(a’/2)ez) o Oy — Olyy = Sin
K=-1 e%:e%:l,epez:O N
I = cos?(a/2)du? + sin?(a/2)dv? o o, — o, = sina’
Il = cos (/2) sin (/2)(du? — dv?)

R*>! r
r’ ¥ =r+1(cos(a’/2)er + sin (a'/2)ez) o Qyy — Olyy = — Sin«
K = 1 space-like Space-like congruence 1
I = cos?(a/2)du? + sin?(a/2)dv? e% = e% =1,e1-e2=0 o o, — o, = —sina’
Il = — cos (/2) sin (a/2)(du? — dv?)

R*>! r
r’ ¥ =r+I(sinh (¢’ /2) e1 + cosh (¢’ /2) e3) a Quy — 0y = sinha
K =1 time-like Time-like congruence 1
Principal curvatures k1 # k7, real ¥ =r+1(cosh (a’/2) e; + sinh (&’ /2) e3) o o, — a,, = sinho’
I = cosh?(a/2)du? — sinh?(x/2)dv? Space-like congruence
or sinh 2(a/2)du? — cosh ?(a/2)dv? ei=—-el=16€-e=0
II = cosh (a/2) sinh (&/2)(du® — dv?)

R*! r r =r+l(ae; + bey) 2 wuy = (1/2)e”
r’ abe® =1 It
K =1 time-like Space-like congruence o w), =—(1 /2)e?
K1 = K2 abe® = —1
I = —e®dudv+ dv? Time-like congruence
II = —e“dudv e%:e%:O,el-ezze“’/Z
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Appendix. (Continued)

Space Surface Congruence and BT DT Equation
R*1 r F=r+l(ael +bey)
r’ abe® =1 1) Wy = coshw
K =1 time-like Space-like congruence )
K1, K2 imaginary abe? = —1 ' w), = cosh o’
I = —du® — 2sinh wdu dv + dv? Time-like congruence
II = —2coshwdudv e%:e%:O,eyez:ew/Z
R*1 r
K = —1 time-like
I = cos?(a/2)du? — sin?(a/2)dv? r =r+1(cosh (¢'/2) e; + sinh (a'/2) e3) a Ao = sina
IT = cos (a/2) sin (a/2)(du® — dv?) el=—-es=1,e-e=0 1
r’ r=r 4 1I(cos (a/2)e| + sin (x/2¢)) o Ao’ = sinha’

K = —1 space-like
I = cosh?(a’/2)du? + sinh ?(a/2)dv?
II = cosh («/2) sinh (¢’ /2) (du? + dv?)

Space-like congruence

2 2 / /o
e =e;=1,¢e,-¢;,=0

0Te
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